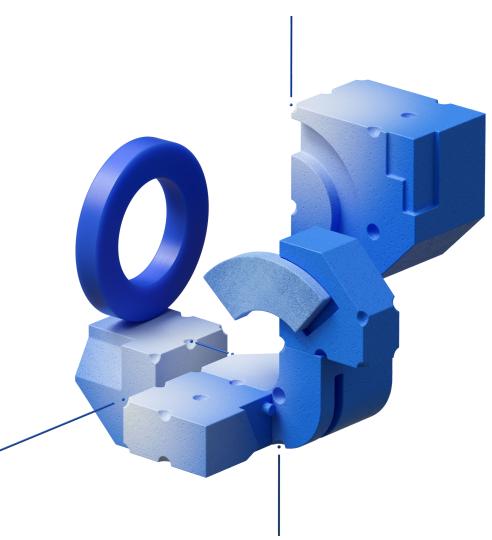
Google DeepMind

Data curation is the next frontier of SSL

Olivier Hénaff

ECCV 2024 SSL WIN Workshop

29 September 2024



The world runs on self-supervised learning

Unimodal SSL on

- images (e.g. DINOv2)
- text (e.g. GPT-3)

Multimodal SSL

- image-text (e.g. CLIP)
- video-audio (e.g. MMV)

The world runs on self-supervised learning

Unimodal SSL on

- images (e.g. DINOv2)
- text (e.g. GPT-3)

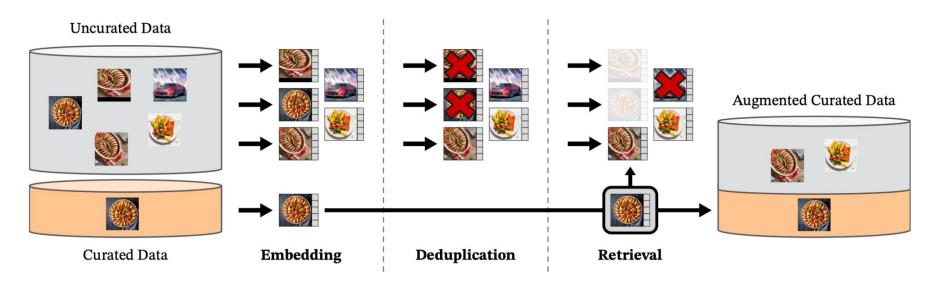
Multimodal SSL

- image-text (e.g. CLIP)
- video-audio (e.g. MMV)

... all rests on clever choices of data

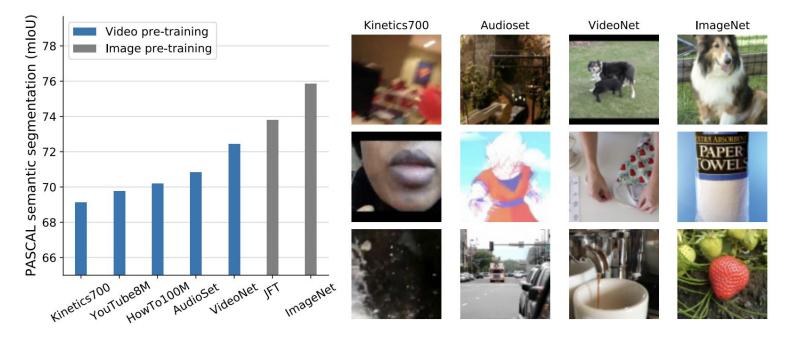
Oquab, 2023

Image SSL with DINOv2: strong curation with eval data



Parthasarathy, 2023

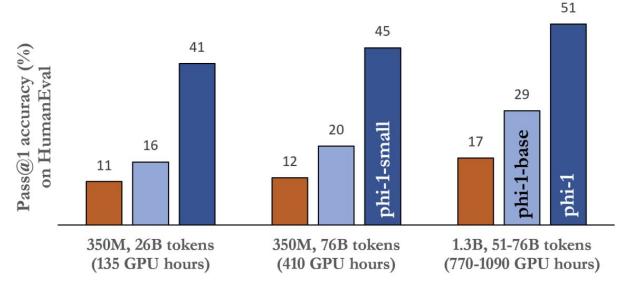
Video SSL with VITO: curation with high-quality image prior



Google

Gunasekar, 2023

Current LLM's are highly dependent on data quality



 $\blacksquare The Stack + \blacksquare CodeTextbook \blacksquare CodeTextbook \rightarrow CodeExercises$

Dataset	Pretraining (as is)	Retrieving pretraining data	Eval.	Task	Citation
ImageNet-1k	×	1	1	Classif.	(Russakovsky et al., 2015)
ImageNet-22k	1	1	×		(Deng et al., 2009)
ImageNet-V2	×	×	1	Classif.	(Recht et al., 2019)
ImageNet-ReaL	×	×	1	Classif.	(Beyer et al., 2020)
ImageNet-A	×	×	1	Classif.	(Hendrycks et al., 2021b)
ImageNet-C	×	×	1	Classif.	(Hendrycks & Dietterich, 2019)
ImageNet-R	×	×	1	Classif.	(Hendrycks et al., 2021a)
ImageNet-Sk.	×	X	1	Classif.	(Wang et al., 2019)
Food-101	X	1	1	Classif.	(Bossard et al., 2014)
CIFAR-10	×	1	1	Classif.	(Krizhevsky et al., 2009)
CIFAR-100	×	1	1	Classif.	(Krizhevsky et al., 2009)
SUN397	×	1	1	Classif.	(Xiao et al., 2010)
StanfordCars	×	1	1	Classif.	(Krause et al., 2013)
FGVC-Aircraft	×	1	1	Classif.	(Maji et al., 2013)
VOC 2007	×	1	1	Classif.	(Everingham et al., 2010)
DTD	x	1	1	Classif.	(Cimpoi et al., 2014)
Oxford Pets	×	1	1	Classif.	(Parkhi et al., 2012)
Caltech101	×	1	1	Classif.	(Fei-Fei et al., 2004)
Flowers	×	1	1	Classif.	(Nilsback & Zisserman, 2008)
CUB200	×	1	1	Classif.	(Welinder et al., 2010)
iNaturalist 2018	×	×	1	Classif.	(Van Horn et al., 2018)
iNaturalist 2021	×	×	1	Classif.	(Van Horn et al., 2021)
Places-205	×	X	1	Classif.	(Zhou et al., 2014)
UCF101	×	×	1	Video	(Soomro et al., 2012)
Kinetics-400	×	×	1	Video	(Kay et al., 2017)
SSv2	×	×	1	Video	(Goyal et al., 2017)
GLD v2	1	1	X		(Weyand et al., 2020)
R-Paris	×	1	1	Retrieval	(Radenović et al., 2018a)
R-Oxford	×	1	1	Retrieval	(Radenović et al., 2018a)
Met	×	1	1	Retrieval	(Ypsilantis et al., 2021)
Amstertime	×	1	1	Retrieval	(Yildiz et al., 2022)
ADE20k	×	1	1	Seg.	(Zhou et al., 2017)
Cityscapes	×	1	1	Seg.	(Cordts et al., 2016)
VOC 2012	X	1	1	Seg.	(Everingham et al., 2010)
Mapillary SLS	1	×	×		(Warburg et al., 2020)
NYU-Depth V2	×	1	1	Depth	(Silberman et al., 2012)
KITTI	×	1	1	Depth	(Geiger et al., 2013)
SUN-RGBD	×	1	1	Depth	(Song et al., 2015)
DollarStreet	×	×	1	Fairness	(De Vries et al., 2019)
Casual Conv.	×	×	1	Fairness	(Hazirbas et al., 2021)

Yet data-curation is currently a secretive & tedious process

- More "feature engineering" than "deep learning"
- Lots of details hidden in appendices
- Hard to reproduce specific dataset versions

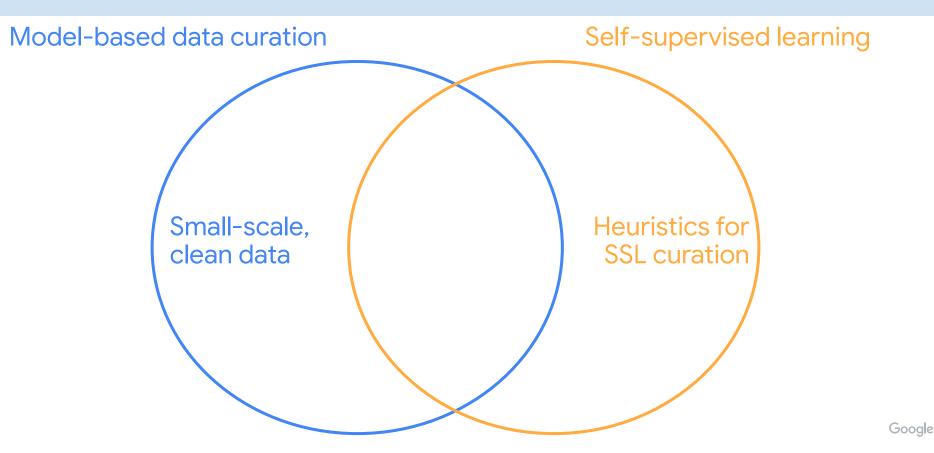
Dataset	Pretraining (as is)	Retrieving pretraining data	Eval.	Task	Citation
ImageNet-1k	×	1	1	Classif.	(Russakovsky et al., 2015)
ImageNet-22k	1	1	×		(Deng et al., 2009)
ImageNet-V2	×	×	1	Classif.	(Recht et al., 2019)
ImageNet-ReaL	×	×	1	Classif.	(Beyer et al., 2020)
ImageNet-A	×	×	1	Classif.	(Hendrycks et al., 2021b)
ImageNet-C	×	×	1	Classif.	(Hendrycks & Dietterich, 2019)
ImageNet-R	×	×	1	Classif.	(Hendrycks et al., 2021a)
ImageNet-Sk.	×	X	1	Classif.	(Wang et al., 2019)
Food-101	X	1	1	Classif.	(Bossard et al., 2014)
CIFAR-10	×	1	1	Classif.	(Krizhevsky et al., 2009)
CIFAR-100	×	1	1	Classif.	(Krizhevsky et al., 2009)
SUN397	×	1	1	Classif.	(Xiao et al., 2010)
StanfordCars	×	1	1	Classif.	(Krause et al., 2013)
FGVC-Aircraft	×	1	1	Classif.	(Maji et al., 2013)
VOC 2007	×	1	1	Classif.	(Everingham et al., 2010)
DTD	X	1	1	Classif.	(Cimpoi et al., 2014)
Oxford Pets	×	1	1	Classif.	(Parkhi et al., 2012)
Caltech101	×	1	1	Classif.	(Fei-Fei et al., 2004)
Flowers	×	1	1	Classif.	(Nilsback & Zisserman, 2008)
CUB200	×	1	1	Classif.	(Welinder et al., 2010)
iNaturalist 2018	×	×	1	Classif.	(Van Horn et al., 2018)
iNaturalist 2021	×	×	1	Classif.	(Van Horn et al., 2021)
Places-205	×	×	1	Classif.	(Zhou et al., 2014)
UCF101	×	×	1	Video	(Soomro et al., 2012)
Kinetics-400	×	×	1	Video	(Kay et al., 2017)
SSv2	×	×	1	Video	(Goyal et al., 2017)
GLD v2	1	1	×		(Weyand et al., 2020)
R-Paris	×	1	1	Retrieval	(Radenović et al., 2018a)
R-Oxford	×	1	1	Retrieval	(Radenović et al., 2018a)
Met	×	1	1	Retrieval	(Ypsilantis et al., 2021)
Amstertime	×	1	1	Retrieval	(Yildiz et al., 2022)
ADE20k	×	1	1	Seg.	(Zhou et al., 2017)
Cityscapes	×	1	1	Seg.	(Cordts et al., 2016)
VOC 2012	×	1	1	Seg.	(Everingham et al., 2010)
Mapillary SLS	1	×	X		(Warburg et al., 2020)
NYU-Depth V2	×	1	1	Depth	(Silberman et al., 2012)
KITTI	×	1	1	Depth	(Geiger et al., 2013)
SUN-RGBD	×	1	1	Depth	(Song et al., 2015)
DollarStreet	×	X	1	Fairness	(De Vries et al., 2019)

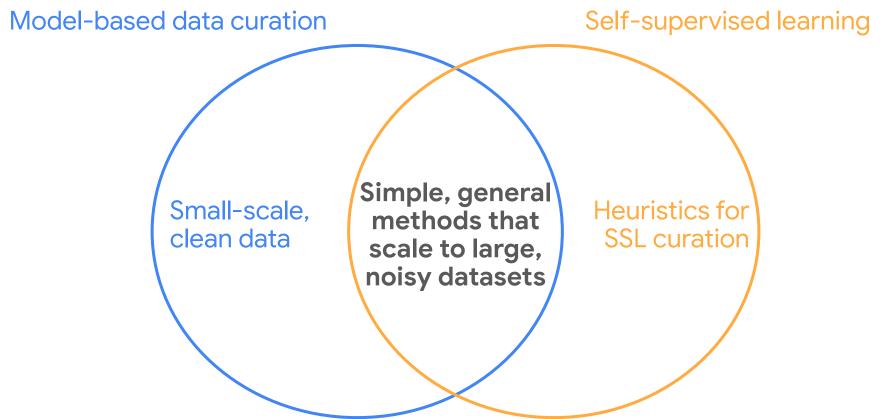
Yet data-curation is currently a secretive & tedious process

- More "feature engineering" than "deep learning"
- Lots of details hidden in appendices
- Hard to reproduce specific dataset versions

Let's bring data curation to the front!

- Accept it as integral part of CV pipelines
- Own its details, allowing reproduction
- Same scientific rigor as architectures, objectives, optim
 - \rightarrow simple, scalable methods for data curation!
 - \rightarrow prime candidate: model-based data curation





Bad Students Make Great Teachers: Active Learning Accelerates Large-Scale Visual Understanding

- \rightarrow builds a framework model-based data selection
 - Which model-based criteria for data-selection?
 - How to make data-selection tractable?

Bad Students Make Great Teachers: Active Learning Accelerates Large-Scale Visual Understanding

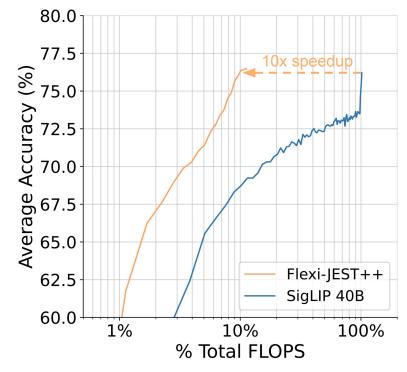
 \rightarrow builds a framework model-based data selection

- Which model-based criteria for data-selection?
- How to make data-selection tractable?

Data Curation with Joint Example Selection Further Accelerates Multimodal Learning

 \rightarrow applies this framework to multimodal contrastive SSL

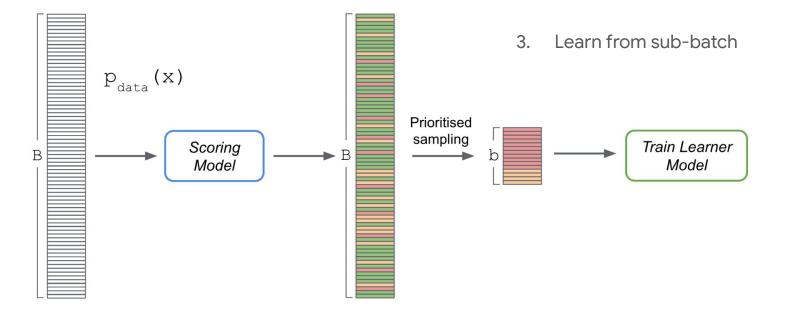
- Contrastive SSL enables joint example selection (JEST)
- JEST radically accelerates multimodal learning (10x)



Google

Model-based data curation: framework

Data curation with online batch selection: 1. Score super-batch

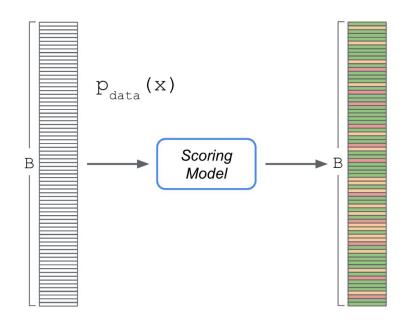


2. Sub-sample batch according to these scores

Google

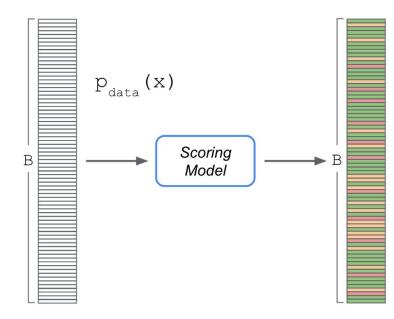
Hard-learner: $s^{ ext{hard}}(oldsymbol{x}_i| heta) = \ell(oldsymbol{x}_i| heta)$

 \rightarrow removes trivial examples, but emphasizes noise



Hard-learner: $s^{ ext{hard}}(oldsymbol{x}_i| heta) = \ell(oldsymbol{x}_i| heta)$

 \rightarrow removes trivial examples, but emphasizes noise

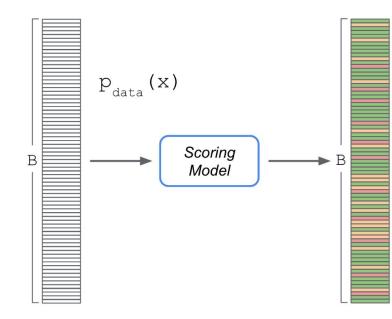


Easy-reference: $s^{ ext{easy}}(m{x}_i|m{ heta}) = -\ell(m{x}_i|m{ heta})$ cf. CLIP-Score

 \rightarrow removes noise, but emphasizes trivial examples

Hard-learner: $s^{ ext{hard}}(oldsymbol{x}_i| heta) = \ell(oldsymbol{x}_i| heta)$

 \rightarrow removes trivial examples, but emphasizes noise



Easy-reference: $s^{\text{easy}}(\boldsymbol{x}_i|\theta) = -\ell(\boldsymbol{x}_i|\theta)$ cf. CLIP-Score \rightarrow removes noise, but emphasizes trivial examples

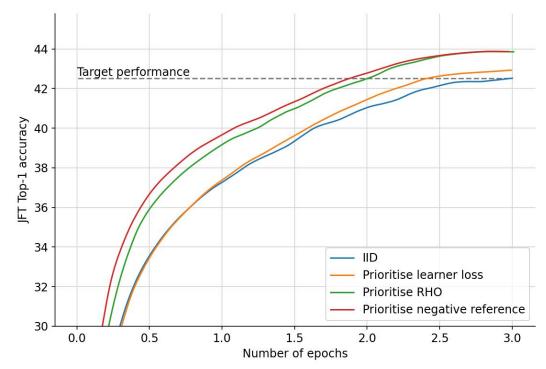
Learnability: $s^{\text{learn}}(\boldsymbol{x}_i|\theta^t, \theta^*) = s^{\text{hard}}(\boldsymbol{x}_i|\theta^t) + s^{\text{easy}}(\boldsymbol{x}_i|\theta^*)$ = $\ell(\boldsymbol{x}_i|\theta^t) - \ell(\boldsymbol{x}_i|\theta^*)$

 \rightarrow emphasizes hard examples that get easy with more compute (not trivial, not noisy)

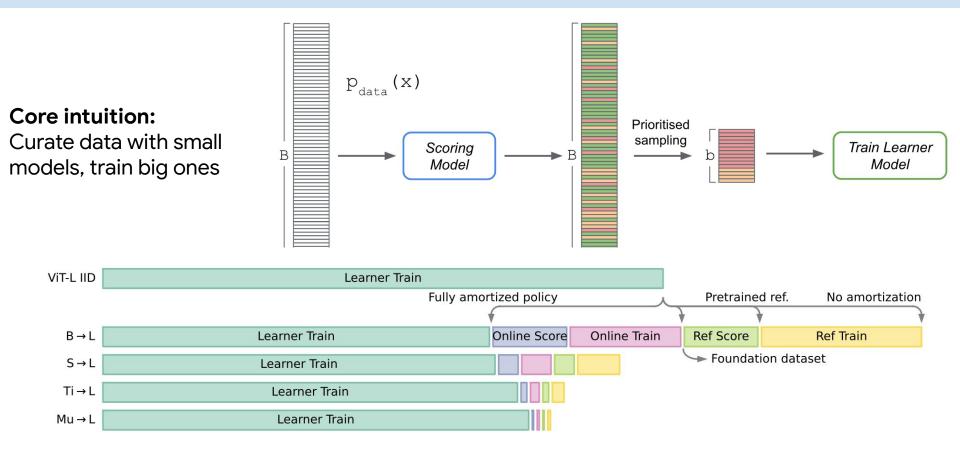
Google

Large-scale classification on JFT-300M

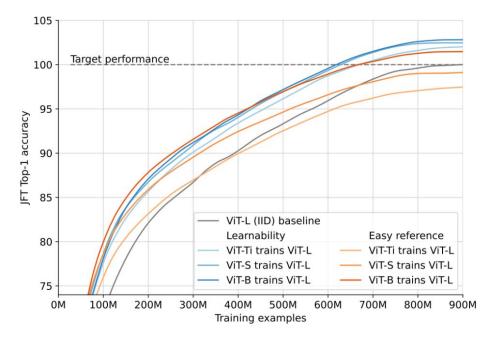
- Prioritize with hard-learner
 → 10% speed-up
- Prioritize easy reference
 → 30% speed-up
- Prioritize with learnability
 → 30% speed-up



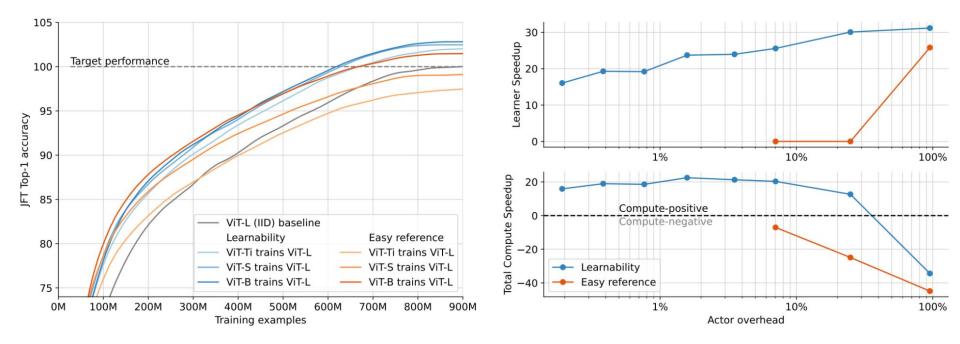
Model-based data curation: unlocking compute-positivity



Model-based data curation: unlocking compute-positivity



Model-based data curation: unlocking compute-positivity



Bad Students Make Great Teachers: Active Learning Accelerates Large-Scale Visual Understanding

 \rightarrow builds a framework model-based data selection

- Which model-based criteria for data-selection? → learnability!
- How to make data-selection tractable? → small models + generalizable policies!!

Bad Students Make Great Teachers: Active Learning Accelerates Large-Scale Visual Understanding

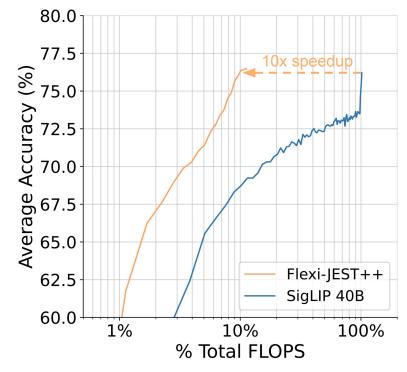
 \rightarrow builds a framework model-based data selection

- Which model-based criteria for data-selection?
- How to make data-selection tractable?

Data Curation with Joint Example Selection Further Accelerates Multimodal Learning

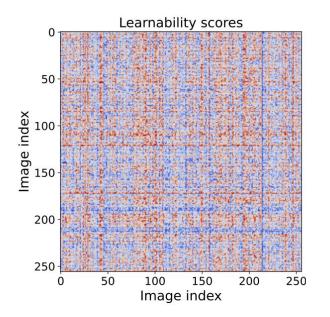
 \rightarrow applies this framework to multimodal contrastive SSL

- Contrastive SSL enables joint example selection (JEST)
- JEST radically accelerates multimodal learning (10x)

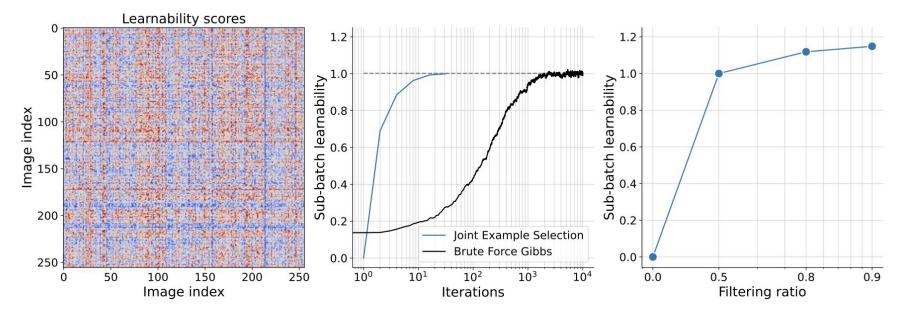


Google

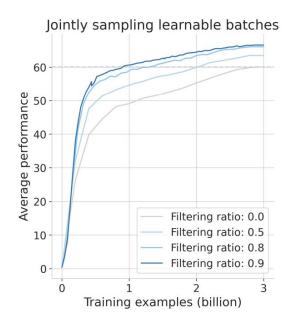
- Model: multimodal contrastive learning with SigLIP
- **Prior work**: only focuses on independent data selection, i.e. diagonals of the contrastive matrix
- Intuition: contrastive loss depends on entire matrix, and matrix is clearly non-diagonal!



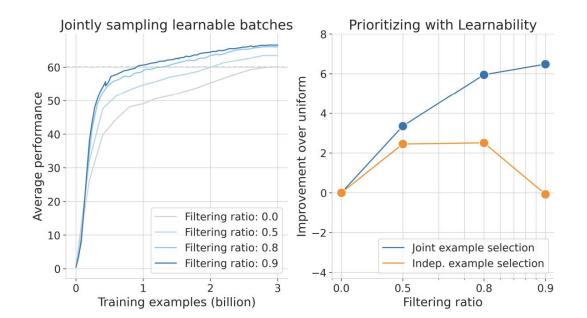
- Model: multimodal contrastive learning with SigLIP
- Prior work: only focuses on independent data selection, i.e. diagonals of the contrastive matrix
- Intuition: contrastive loss depends on entire matrix, and matrix is clearly non-diagonal!



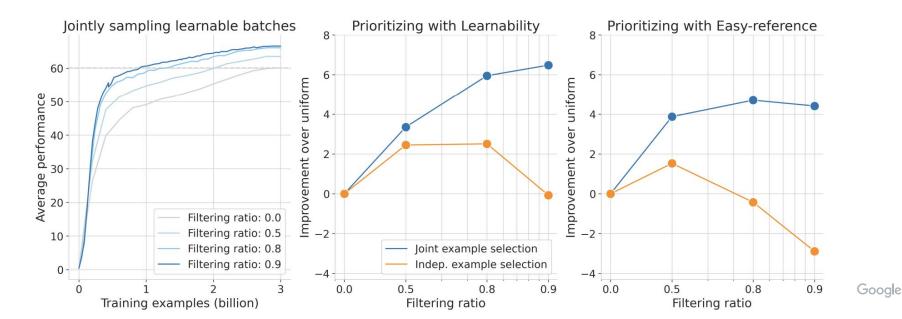
- Model: multimodal contrastive learning with SigLIP
- **Prior work**: only focuses on independent data selection, i.e. diagonals of the contrastive matrix
- Intuition: contrastive loss depends on entire matrix, and matrix is clearly non-diagonal!



- Model: multimodal contrastive learning with SigLIP
- **Prior work**: only focuses on independent data selection, i.e. diagonals of the contrastive matrix
- Intuition: contrastive loss depends on entire matrix, and matrix is clearly non-diagonal!

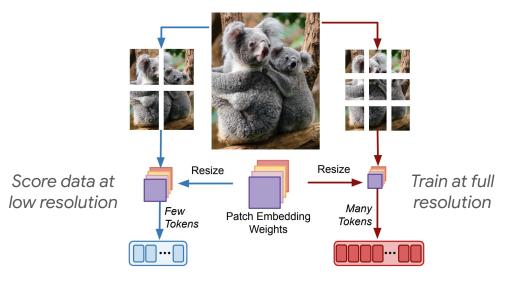


- Model: multimodal contrastive learning with SigLIP
- **Prior work**: only focuses on independent data selection, i.e. diagonals of the contrastive matrix
- Intuition: contrastive loss depends on entire matrix, and matrix is clearly non-diagonal!



Efficient scoring via online model approximation

- Data selection is expensive, cost scales linearly with amount of data rejected
- We use the FlexiVit architecture to score data at low resolution



Beyer et al. (2023)

Efficient scoring via online model approximation

Data selection is expensive, cost scales linearly with amount of data rejected

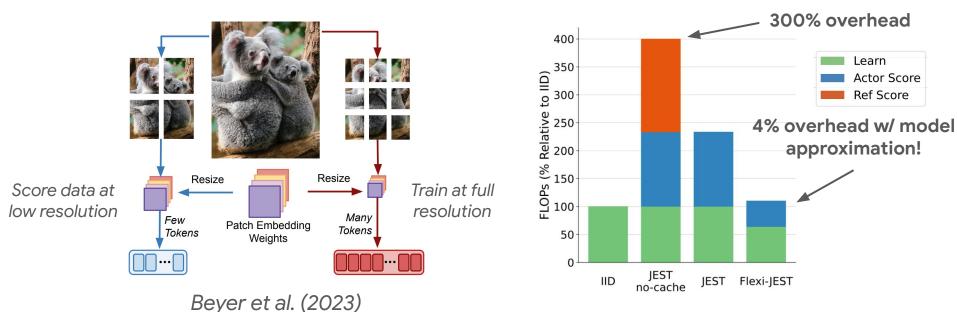
300% overhead

Learn

approximation!

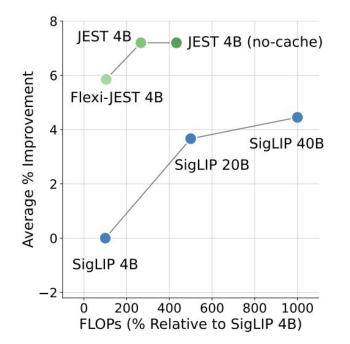
Actor Score **Ref Score**

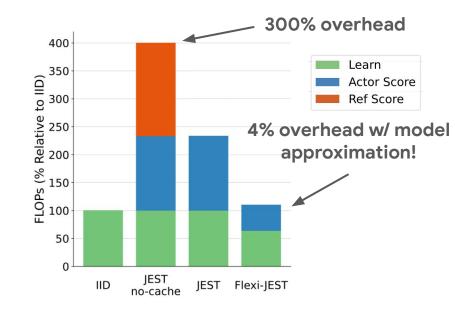
We use the FlexiVit architecture to score data at low resolution



Efficient scoring via online model approximation

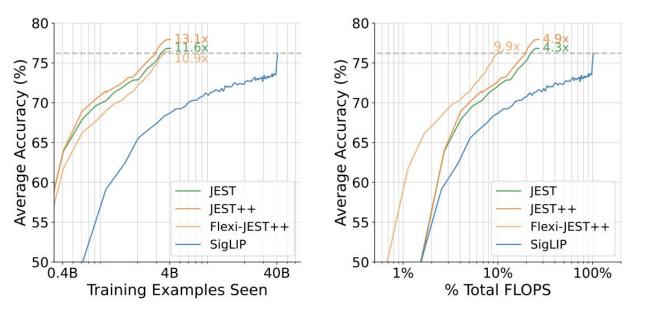
- Data selection is expensive, cost scales linearly with amount of data rejected
- We use the FlexiVit architecture to score data at low resolution



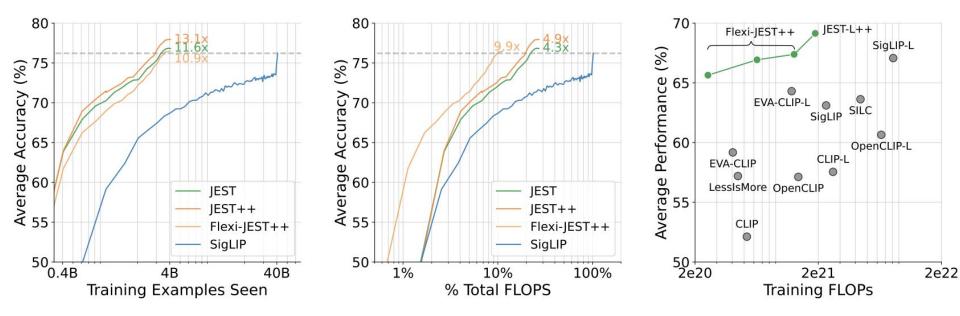


- Data selection is expensive, cost scales linearly with amount of data rejected
- We use the FlexiVit architecture to score data at low resolution

- Data selection is expensive, cost scales linearly with amount of data rejected
- We use the FlexiVit architecture to score data at low resolution



- Data selection is expensive, cost scales linearly with amount of data rejected
- We use the FlexiVit architecture to score data at low resolution



Bad Students Make Great Teachers: Active Learning Accelerates Large-Scale Visual Understanding

- \rightarrow builds a framework model-based data selection
 - Which model-based criteria for data-selection?
 - How to make data-selection tractable?

Data Curation with Joint Example Selection Further Accelerates Multimodal Learning

 \rightarrow applies this framework to multimodal contrastive SSL

- Contrastive SSL enables joint example selection (JEST)
- JEST radically accelerates multimodal learning (10x)

nikparth@

rtanno@

hamzamerzic@

schwarzjn@

shreyapa@

Bad Students Make Great Teachers: Active Learning Accelerates Large-Scale Visual Understanding

- \rightarrow builds a framework model-based data selection
 - Which model-based criteria for data-selection?
 - How to make data-selection tractable?

Data Curation with Joint Example Selection Further Accelerates Multimodal Learning

 \rightarrow applies this framework to multimodal contrastive SSL

- Contrastive SSL enables joint example selection (JEST)
- JEST radically accelerates multimodal learning (10x)

